cCEiNnspect

You build, we defend.

Smart Contract Audit
Project 6022

Dec, 2024

cCEIiNnspect

Protocol 6022

Smart Contract Audit

Version: v241230 Prepared for: Protocol 6022 December 2024
Security Assessment

1. Executive Summary
2. Summary of Findings
2.3 Solved issues & recommendations
3. Scope
4. Assessment
4.1 Security assumptions
4.2 Decentralization
4.3 Testing
4.4 Code quality

5. Detailed Findings

© Coinspect 2024 1/33

P6022-01 - New vaults don't receive reward
allocation upon creation

P6022-02 - Rewards will get permanently locked
after reinvesting

P6022-03 - Vaults receive incorrect or zero amount
of rewards when harvesting

P6022-04 - Incompatible vault conditions render
rewards unclaimable

P6022-05 - Creation of expired vaults lose funds and
become unusable

P6022-06 - Low reward amounts might be lost and
not be assigned to any vault

P6022-07 - Irrecoverable dust is spontaneously
generated after a reward distribution

P6022-08 - Vaults receive less rewards due to
precision loss in fee calculations

P6022-09 - Unused code

6. Disclaimer

© Coinspect 2024

2/33

1. Executive Summary

of Protocol 6022. The objective of the project was to evaluate the security of the
smart contracts involved.

Protocol 6022 is a reward distribution protocol that allows users to create pools
and vaults. Each Vault receives shares of a reward pool where the owner can
decide to claim or reinvest.

v A X

Solved Caution Advised Resolution Pending
High High High
3 0 0
Medium Medium Medium
3 0 0
Low Low Low
0 0 0
No Risk No Risk No Risk
3 0 0
Total Total Total

9 0 0

During this assessment, Coinspect identified the following issues: P6022-01 shows
the risks of not updating the reward accountancy when creating new vaults,
P6022-02 explains a scenario where rewards for a vault remain locked into the
pool, P6022-83 warns about a scenario where a vault can receive an incorrect
amount of rewards, and P6022-84 shows how non compatible conditions render
rewards unclaimable. Then, P6022-05 shows how vaults created in the future harm
the pool. Lastly, P6022-66 explains how vault could receive no allocations with
non-zero reward amounts and P6022-07 shows how reward dust is spontaneously
accumulated inside each pool.

© Coinspect 2024 3/33

https://6022.io/
https://coinspect.com/

2. Summary of Findings

This section provides a concise overview of all the findings in the report grouped
by remediation status and sorted by estimated total risk.

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could
improve the long-term security posture of the project.

Id Title Risk

New vaults don't receive reward allocation upon

P6022-01 .
creation

High

P6022-02 Rewards will get permanently locked after reinvesting High

P6022-04 Incompatible vault condltlons render rewards High
unclaimable

P6022-05 Creation of expired vaults lose funds and become Medium

unusable

P6022-06 Low reward amounts might be lost and not be assigned Medium

to any vault
) Irrecoverable dust is spontaneously generated after a .
Pe022-07 reward distribution Medium

Vaults receive incorrect or zero amount of rewards
P6022-03 when harvesting None

P6022-08 Vaults receive less rewards dye to precision loss in fee None
calculations
P6022-09 Unused code None

© Coinspect 2024 4/ 33

3. Scope

The scope was set to be the repository at fttps://github.com/6022pratacol/6022
at commit f428dabd57462966a7c6b1ale2ad85e40b37787a.

© Coinspect 2024 5/33

https://github.com/6022protocol/6022

4. Assessment

The project features a modular rewarding system that allows users to create
rewarding pools. Then, each user can create vaults for each rewarding pool.
Vaults are expected to accrue rewards through the reward pool where they were
created.

Users have to deposit a token (ERC26 or ERC721) into a vault in order to start
accumulating rewards. When a user creates a vault, they receive three Vault NFTs.

The rewarding system considers several rewarding scenarios that trigger reward
harvesting or reinvestment depending on several conditions such as lock times,
current timestamp and the amount of Vault NFTs held.

The rewarding system estimates the amount of collected rewards only for eligible
pools. Eligible pools must have a lock time in the future, and the user must have a
stake in the vault (an ongoing deposit). Coinspect reported several issues related
to the rewarding system and accrual. Also, the rewarding mechanism is custom-
made for this project and does not follow any well known and stress tested
mechanisms (e.g. Masterchef, Synthetix). Considering the overall risk of the
reported issues, Coinspect strongly recommends reimplementing the reward
system using the before-mentioned mechanisms as a reference.

4.1 Security assumptions

For this security assessment Coinspect assumed that:

o Operative variables and parameters of the project are defined correctly
o Users interact with the system deploying pools using their factories, instead of
deploying their own contracts.

4.2 Decentralization

The project uses a role based access control for the Controller smart contract. It
restricts and controls several methods related to the privileges for adding new
pools to the internal state. Also, functions to modify administrator privileges are
included. Coinspect identified the presence of horizontal take-over risk since
anyone holding the administrator role can remove and add new admins.

© Coinspect 2024 6/33

4.3 Testing

Coinspect observed that the testing suite does not reflect adversarial scenarios.
Additionally, tests that thoroughly evaluate how rewards are allocated, updated
and distributed are not included. The test suite mainly reproduces superficial
scenarios considering the event emission as the only success condition, and
does not take into account different usage scenarios. For example, cases with
multiple vaults, with different wanted token types, lock times, that combine
different operations (harvest, reinvest), among other sample scenarios.

It is strongly recommended to include more adversarial tests as well as success
conditions before advancing to the production phase to increase the chance of
detecting bugs.

4.4 Code quality

Coinspect observed that several variables and smart contracts include NatSpec.
However, most public/external functions do not include it. It is recommended to
add the missing documentation in those functions.

Additionally, the documentation link provided at the README is outdated and
mentions functions that no longer exist.

© Coinspect 2024 7/33

5. Detailed Findings

P6022-01

[
New vaults don't receive reward allocation

upon creation

Status Ri?k
Solved High
v
Impact
High
R?solution II__liIE;Ii‘r‘wood
Fixed
Location

core/contracts/RewardPo0l6022.s0l#L80-L96

Description

All vaults in the system receive incorrect reward calculations because the
protocol tracks non-existent fees, directly impacting the reward distribution
fairness. This occurs because the collectedFees state variable, which is crucial
for reward calculations, is incremented even when no actual fees are

collected.

© Coinspect 2024 8/33

The issue starts when users create a vault through
RewardPool6022 : :createVault. The protocol first calculates the expected fees:

uint256 _protocolTokenFees = (_backedValueProtocolToken / 160) *
FEES_PERCENT;

if (_rewardablePools() > 0) {
protocolToken.transferFrom(msg.sender, address(this),
_protocolTokenFees) ;
_updateRewards(_protocolTokenFees);

}

However, vaults are not rewardable by default. A vault only becomes
rewardable when it meets three conditions:

1. It must have received deposits

2. Its lockeduUntil timestamp must be greater than the current
block.timestamp

3. Must not have made the withdrawal

For example, the first vault in a pool, neither condition is met at creation time.
This causes the _rewardablePools() > @ check to return false, skipping the fee
transfer entirely. Despite no actual fees being collected, the protocol still
creates the vault and incorrectly records phantom fees in the accounting.

Vault6622 vault = new Vault6022(
msg.sender,
_name,
_lockedUntil,
_wantedAmount,
address(this),
_wantedTokenAddress,
_storageType
)
allVaults.push(address(vault));
isVault[address(vault)] = true;
@> collectedFees[address(vault)] += _protocolTokenFees; // Increments
fees even when no transfer occurred

This accountancy error has system-wide implications because collectedFees
is used to calculate rewards for all vaults in the pool. The phantom fees
artificially inflate the total fee pool, causing early vaults to receive unearned
rewards while diluting rewards for vaults that actually paid fees.

Recommendation

Handle reward updates so they consider newly created vaults.

© Coinspect 2024

9/33

Status

Fixed on commit 52127fbc83777ba61003fd7db5e72ce5ae3b7711.

Vault creation was fixed to allocate token fees for all vaults.

Proof of Concept

The test will demonstrate that collectedFees shows a balance in the vault
even when the actual token balance in the vault is O:

collectedFees Balance: 200000000000000000
protocolTokenBalance Balance: 0

it("Coinspect - collected fees are greater than protocol token
balance", async function (){
const { vault6022, rewardPool6622 } = await loadFixture(
deployDepositedVaultFixture

’

// Get the protocol token
const protocolTokenAddress = await
rewardPo0l6022.protocolToken();

// Get collected fees for the vault
const collectedFees = await rewardPo0l6022.collectedFees(await
vault6022.getAddress());

// Create IERC20 interface for protocol token

const protocolToken = await ethers.getContractAt("IERC20",
protocolTokenAddress) ;

const protocolTokenBalance = await protocolToken.balanceOf(await
rewardPo0l6022.getAddress());

console.log("collectedFees Balance: ", collectedFees);
console.log("protocolTokenBalance Balance: ",

protocolTokenBalance);
// Assert that collected fees are greater than protocol token

balance
expect(collectedFees).to.be.gt(protocolTokenBalance) ;

1)

© Coinspect 2024 10/ 33

P6022-02

|
Rewards will get permanently locked after

reinvesting
Status Risk
Solved High

Impact
High
R luti Lilfelihood
?SO ution ngh
Fixed
Location

core/contracts/Vault6022.sol#L157-L162

Description

Users permanently lose access to their rewards when using ERC721 tokens as
wantedToken due to a flawed withdrawal mechanism. This happens because the
protocol attempts to transfer the same NFT token multiple times, even after
it's already been withdrawn, causing all subsequent withdrawal transactions
to revert.

The issue occurs in the following sequence:

1. User calls RewardPool6022 : :createVault() specifying an NFT contract as
wantedTokenAddress with storageType = VaultStorageEnum.ERC721
. User deposits the NFTs wantedAmount via Vault6622: :deposit()
3. Vault accumulates rewards over time through protocol operations while
lockUntil is less than block.timestamp
4. User performs initial withdrawal via Vault6022: :withdraw() which:

N

© Coinspect 2024 11733

o Transfers the NFT wantedAmount back to the user

e Sets isWithdrawn = true

» Reinvests existing rewards through rewardPool.reinvestRewards(). This
step distributes rewards across all rewardable pools, diluting its amount.

When trying to claim the reinvested rewards through another withdraw() call,
the function attempts to transfer the same wantedAmount again, but fails since
the NFT is no longer in the vault's possession.

function withdraw() public nonReentrant {
if (!isDeposited) {
revert ContractNotDeposited();
}

uint256 requiredNFTs = getRequiredNftsToWithdraw();
if (requiredNFTs > balanceOf(msg.sender)) {

revert NotEnoughtNFTToWithdraw();
}

if (storageType == VaultStorageEnum.ERC721) {
TIERC721 wantedToken = IERC721(wantedTokenAddress);

wantedToken.transferFrom(address(this), msg.sender,
wantedAmount) ;
emit Withdrawn(msg.sender, wantedAmount);
} else {
IERC20 wantedToken = IERC20(wantedTokenAddress);
uint256 balance = wantedToken.balanceOf(address(this));

wantedToken.transfer(msg.sender, balance);
emit Withdrawn(msg.sender, balance);

¥

isWithdrawn = true;
withdrawTimestamp = block.timestamp;

if (requiredNFTs == WITHDRAW_NFTS_LATE) {
rewardPool.harvestRewards(msg.sender) ;
} else {
rewardPool.reinvestRewards();
}

The repeated transfer attempt causes two critical issues:

o For ERC721: The transaction reverts because the NFT is no longer in the
vault, causing the rewards to remain locked. Even if the policyholder or
Insurance attempts to deposit again the wantedAmount NFT to withdraw the
rewards, they create a security risk, when lockedUntil < block.timestamp,
any counterparty can withdraw both the wantedAmount and rewards since
the required NFT holding check drops from 2 to 1.

» For ERC20: While the transaction succeeds, it wastes gas attempting a
zero value transfer

© Coinspect 2024

12 /33

Also, if the design intends that users can only call withdraw() once,
redistributing their rewards across other vaults make other issues to arise:

1. Users are allowed to bypass single-withdrawals by directly transferring
the wanted NFT to the Vault, and call withdraw() again.

2. The reward pool will still have a non-zero collectedFees value for the
vault. As a consequence, the portion of rewards allocated to that vault
will remain locked into the Reward Pool.

Recommendation

Redesign the withdrawal mechanism so it: ensures token availability (either
NFT or ERC20) and uses updated values for accrued rewards.

The withdrawal mechanism should properly handle rewards at the time of
withdrawal since the vault becomes non-rewardable afterwards (isRewardable
returns false when isWithdrawn is true). Distribute pending rewards during
withdrawal before marking the vault as withdrawn.

Status

Fixed on commit 52127fbc83777ba61003fd7db5e72ce5ae3b7711.

Vaults now include modifiers that prevent multiple deposits and withdrawals,
making this issue infeasible.

Proof of Concept

The following test demonstrates that rewards get permanently locked after
reinvesting with ERC721:

NFT balance in vault before withdrawal: 1
NFT balance in vault after first withdrawal: ©

Attempting second Withdrawal:
// Second withdrawal fails because the NFT is no longer in the vault
NFT balance in vault after second withdrawal: ©

it("Coinspect - Rewards get locked after reinvesting with ERC721",
async function () {
const { rewardPool6022, token6022, owner } = await loadFixture(
deployEmptyVaultFixture
);

© Coinspect 2024 13/33

// Setup: Create vault with ERC721 token and deposit
const MockERC721 = await ethers.getContractFactory("MockERC721");
const mockNFT = await MockERC721.deploy("MockNFT", "MNFT");

// Mint NFT to owner
await mockNFT.mint(await owner.getAddress(), 1);

// Create new vault using ERC721
const tx = await rewardPo0l6622.connect(owner).createVault(
"Vault6022",
lockUntil,
1, // wantedAmount is 1 NFT
await mockNFT.getAddress(),
1, // VaultStorageEnum.ERC721
ethers.parseEther("10")

)

const txReceipt = await tx.wait();
const events = txReceipt?.logs.filter((x) => x instanceof EventlLog)

as EventlLog[];
const vaultCreatedEvent = events.filter(
(x) => x.fragment.name === "VaultCreated"

y[ol;

const nftVault = await ethers.getContractAt("Vault6022",
vaultCreatedEvent.args[0]);

// Approve and deposit NFT
await mockNFT.connect(owner).approve(await nftVault.getAddress(),

1);

await nftVault.connect(owner).deposit();

console.log(NFT balance in vault before withdrawal: ${await
mockNFT.balanceOf ((await nftVault.getAddress()))});

// First withdrawal
await nftVault.connect(owner).withdraw();

console.log(NFT balance in vault after first withdrawal: ${await
mockNFT.balanceOf((await nftVault.getAddress()))});

// Try to withdraw reinvested rewards but it was reverted
console.log("\nAttempting second Withdrawal:");
await expect(
nftVault.connect(owner).withdraw()
).to.be.reverted;

© Coinspect 2024 14 / 33

P6022-03

[
Vaults receive incorrect or zero amount of
rewards when harvesting

Status Risk
Solved None

Impact
Recommendation
Resolution Likelihood
Acknowledged -
Location

core/contracts/RewardPool6622.s0l#L103

Description

Vaults performing late withdrawals in order to harvest rewards will not
receive the correct amount of rewards, ranging from receiving zero rewards
to all the available rewards in the pool. This happens because reward
harvesting does not update the collected rewards before claiming.

When a vault harvest rewards, RewardPool.harvestRewards() is called:

function harvestRewards(address to) external onlyVault {
uint256 valueToHarvest = collectedRewards[msg.sender];
collectedRewards[msg.sender] = 9;

protocolToken.transfer(to, valueToHarvest);

© Coinspect 2024 15/ 33

emit Harvested(msg.sender);

This function transfers a valueToHarvest amount to the recipient. However, this
parameter is only updated under two circumstances:

e When a new vault is created AND fees are distributed.
o When any vault decides to reinvest.

The vault creation process only updates the rewards' state only if there are
other rewardable vaults in the system (see P6022-01). Because of this, the
reward state is lagged and does not consider the shares of at least one vault.

A vault is considered rewardable after meeting the following conditions:

function isRewardable() external view returns (bool) {
return lockedUntil > block.timestamp && isDeposited &&
lisWithdrawn;

}
Also, reward updates are not triggered if no vault decides to reinvest.

function _updateRewards(uint256 amount) internal {
uint256 totalRewardableVaults = _rewardablePools();

if (totalRewardableVaults == 0) return; // No vaults to reward
and avoid division by zero

for (uint i = 0; i < allVaults.length; i++) {
Vault6022 vault = Vault6022(allVaults[i]);
if (vault.isRewardable()) {
// If there is only one vault, it will get all the past
rewards
if (totalRewardableVaults == 1) {
collectedRewards[address(vault)] =
protocolToken.balanceOf(address(this));
} else {
collectedRewards[address(vault)] += amount *
collectedFees[address(vault)] / totalRewardableVaults;
}
}

Consider the following scenario, a Reward Pool with only a single vault is
created. When this vault is created, there are no rewardable vaults. Meaning
that _updateRewards() is never called. Then, the vault owner decides to harvest
rewards after depositing. Calls withdraw() after the lock period. No rewards
are transferred to that vault.

Also, a similar scenario with two vaults, allows the first vault to steal all
rewards since the vault creation assumes that there is only one rewardable

© Coinspect 2024 16/ 33

vault. When creating the second vault, if only the first one is rewardable, all
the Pool's balance will be assigned to that vault. Then, if no user decides to
reinvest the rewards, _updateRewards() will not be invoked and the first vault
will get all the rewards.

Coinspect considers this issue to have no risk since rewards are only injected
into the system when reinvesting or creating new vaults, and the smart
contract updates the reward state when performing those actions. However,
this scenario should be considered if the code is reused in a different context
where rewards are deposited/withdrawn to the system.

Recommendation

Handle reward updates when harvesting rewards.

Status

Acknowledged.

The P6022 Team stated that policyholders are only rewarded by fees paid by
the insurer on new policyholders.

Proof of Concept

The following test only logs the collected rewards by a vault that harvests. It
can be seen that no rewards are sent to the claimer:

Rewards to be collected by Vault: ©

it("Coinspect - Harvest zero rewards due to lack of update", async
function () {

const { vault6022, rewardPool6622, otherAccount } = await
loadFixture(

deployDepositedVaultFixture

’

await time.increase(lockIn);

console.log(Rewards to be collected by Vault: ${await

rewardPo0l6022.collectedRewards(vault6022.getAddress())} ")
await expect(vault6022.connect(otherAccount).withdraw())
.to.emit(vault6022, "Withdrawn")

© Coinspect 2024 17 / 33

.to.emit(rewardPoo0l6622, "Harvested");
1)

© Coinspect 2024 18 /33

P6022-04

|
Incompatible vault conditions render
rewards unclaimable

Status Rig,k
Solved High

Impact
High
R luti UKeHhood
?SO ution ngh
Fixed
Location

core/contracts/Vault6022.s0l1#L180
core/contracts/Vault6022.so0l#L184

Description

Users are allowed to harvest rewards only after the lockUntil time, however,
no rewards will be accounted for that period since the vault is marked as non-
rewardable.

This happens because the two states don't overlap and are exclusive. When
withdrawing, rewards are harvested only after the lockeduntil time.

function getRequiredNftsToWithdraw() public view returns (uint256) {
return block.timestamp < lockedUntil ? WITHDRAW_NFTS_EARLY :
WITHDRAW_NFTS_LATE;

¥

© Coinspect 2024 19/ 33

This condition is required to trigger reward harvesting, that only occurs when
the required NFTs matches the WITHDRAW_NFTS_LATE:

isWithdrawn = true;
withdrawTimestamp = block.timestamp;

if (requiredNFTs == WITHDRAW_NFTS_LATE) {
rewardPool.harvestRewards(msg.sender);
} else {
rewardPool.reinvestRewards();

}

However, the reward pool only considers rewardable pools as those who
match the following conditions:

1. lockedUntil > block.timestamp
2. isDeposited == true
3. isWithdrawn == false

function isRewardable() external view returns (bool) {
return lockedUntil > block.timestamp && isDeposited &&
lisWithdrawn;

¥

This means that when reaching the harvesting or reinvestment point, no vault
will be considered rewardable and thus, the Reward Pool will not be able to
update their accrued rewards.

Regarding reward harvesting, lockeduntil will be in the past and isWithdrawn
will be true (conditions 1 and 3 are not met). Then for reward reinvestments,
isWithdrawn will be true (condition 3 is not met).

Coinspect considers this issue a concern because the rewarding system only
updates the state of rewardable pools, in addition to P6022-01, P6022-62 and
P6022-03.

Recommendation

Redesign the claimable conditions to ensure that the reward's state for vaults
is updated.

Status

Fixed on commit 52127fbc83777ba61003fd7db5e72ce5ae3b7711.

© Coinspect 2024 20/ 33

Withdraw can now be called only once per vault.

© Coinspect 2024 21/33

P6022-05

|
Creation of expired vaults lose funds and
become unusable

Status Risk .
Solved Medium

v

hnpac{
Medium
Resolution Likelih.ood
. Medium
Fixed
Location

core/contracts/Vault6022.sol#L112

Description

Protocol fees transferred during vault creation become permanently locked if
the vault is created with an expired or nearly expired _lockeduntil timestamp.
This occurs because the protocol fails to validate the lock time during
creation but enforces it during deposit, making the vault unusable while
retaining any transferred fees.

This issue is manifested in through this sequence:

First, a user creates a vault with expired/nearly expired _lockeduntil:

function createVault(
string memory _name,
uint256 _lockedUntil, // No validation of timestamp
uint256 _wantedAmount,

© Coinspect 2024 22 /33

address _wantedTokenAddress,
VaultStorageEnum _storageType
) external {
// Protocol fees are transferred before timestamp validation
if (_rewardablePools() > 0) {
protocolToken.transferFrom(msg.sender, address(this),
_protocolTokenFees) ;

_updateRewards(_protocolTokenFees) ;

}

// Vault created with potentially expired lock time
Vault6022 vault = new Vault6022(

msg.sender,

_nhame,

_lockedUntil,

_wantedAmount,

address(this),

_wantedTokenAddress,

_storageType

Any attempt to deposit will revert due to expired lock time:

function deposit() public nonReentrant {
// ... other checks ...

if (block.timestamp > lockedUntil) {

revert TooLateToDeposit(); // Always reverts if created with
expired time

}

// ... deposit logic never reached

Coinspect identified that this issue harms users as it follows:

1. Protocol fees already transferred are permanently locked into the vault
2. Vault becomes an unusable contract

3. Gas spent on deployment is wasted

4. No recovery mechanism exists for locked fees

5. Total fees are diluted by the non-claimable position

Recommendation

Ensure that _lockeduntil is validated to be greater than block.timestamp
during vault creation, and implement a minimum deposit window.

Status

© Coinspect 2024 23/33

Fixed on commit d95a1c2f40b02e86d71122611346d0T92b631096.

A minimum lock time was added.

© Coinspect 2024 24 /33

P6022-06

|
Low reward amounts might be lost and not
be assigned to any vault

Status Risk .
Solved Medium

v

Impact
High
Resolution Likelihood
. Low
Fixed
Location

core/contracts/RewardPool6622.so0l#L121
core/contracts/RewardPo0l6022.sol#L139

Description

Users could receive zero reward allocation even when they have non-zero
collectedFees, since the reward allocation process does not require a
minimum amount to distribute.

When rewards are updated, each vault receives an allocation proportional to
the amount of shares (collectedFees) they own:

function _updateRewards(uint256 amount) internal {
uint256 totalRewardableVaults = _rewardablePools();

if (totalRewardableVaults == @) return; // No vaults to reward
and avoid division by zero

© Coinspect 2024 25/33

for (uint i = 0; i < allVaults.length; i++) {
Vault6022 vault = Vault6022(allvVaults[i]);
if (vault.isRewardable()) {
// If there is only one vault, it will get all the past
rewards
if (totalRewardableVaults == 1) {
collectedRewards[address(vault)] =
protocolToken.balanceOf(address(this));
} else {
collectedRewards[address(vault)] += amount *
collectedFees[address(vault)] / totalRewardableVaults;

}
}

For small amounts to distribute or Reward Pools with multiple Vaults, the
calculation for collectedRewards could be zero, as Solidity floors down
divisions. Consider the following scenario:

e 100 vaults, collectedFees per vault is 1 (1% share)
e amount = 10

When distributing:

106 * 1 / 160 == 10 / 100 ==

Recommendation

Consider including a minimum amount to distribute so the vault with the
lowest amount of shares still receives at least one reward unit.

Status

Fixed on commits 779f81d5b28efb87fd97c6b3b0d3d29b1b98e285 and
4b4adb1bc7acadd5d0f9ef54616728284d51533a.

Older vaults with low weight receive a slight bonus to prevent leaving dust.

© Coinspect 2024 26 /33

P6022-07

.
Irrecoverable dust is spontaneously
generated after a reward distribution

Status Risk .
Solved Medium
\ 4
Impact
Low
R : Lilfelihood
?solutlon High
Fixed
Location

core/contracts/RewardPo0l6022.sol

Description

Reward distributions might leave irrecoverable dust inside each Reward Pool,
since the allocation does not consider divisions that have a remainder. As a
consequence, a dust of rewards sent to the contract will remain locked.

Rewards are sent when creating a new vault, and it is expected that each
vault claims them when harvesting. The distribution process might leave dust,
as Solidity floors down the result of a division:

} else {
collectedRewards[address(vault)] += amount *
collectedFees[address(vault)] / totalRewardableVaults;

}

© Coinspect 2024 27 /33

Consider the following scenario: there are 1000 tokens to distribute, across
two vaults (with collectedFees equal to 50 and 53 respectively). When
calculating: the first vault receives 485.53 = 485 + 0.53 (dust, lost) and the
last vault receives 514.16 = 514 + 0.16 (dust, lost). A total of 1 unit is lost
as dust only considering two vaults and this amounts. This value can increase
considerably if multiple distributions are sequentially made.

Recommendation

Add a permissioned function to recover rewards dust.

Status

Fixed on commit 5a5bcfOd6c47f444cc323a738dfaabb3ad77fe2a.

A function to recover dust was added. This function allows recovering
remainders once the lifetime vault is no longer rewardable.

© Coinspect 2024 28 /33

P6022-08

A
Vaults receive less rewards due to
precision loss in fee calculations

Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

core/contracts/Vault6022.s0l#L226
core/contracts/RewardPool66022.so0l#L78

Description

Vaults receive fewer rewards than they should due to precision loss in the
initial fee calculations. This issue compounds because collected fees directly
determine reward distribution, and becomes particularly significant for tokens
with low decimals like Gemini USD (2 decimals).

The precision loss begins during vault creation in
RewardProtocol6022: :createVault:

function createVault(...) external {
// Fee calculation with precision loss that affects future rewards
uint256 _protocolTokenFees = (_backedValueProtocolToken / 160) *
FEES_PERCENT;

© Coinspect 2024 29/33

if (_rewardablePools() > 8) {
protocolToken.transferFrom(msg.sender, address(this),
_protocolTokenFees) ;
_updateRewards(_protocolTokenFees); // Reduced fees lead to
reduced rewards
}
//

Single Vault Example (using Gemini USD):

//Backed Value: $200.99 (20099 in token units)

// Current Implementation:
_protocolTokenFees (20099 / 100) * 2
200 * 2

400 (S4.00)

// Correct Calculation:
_protocolTokenFees (20099 * 2) / 100
40198 / 100

401 (S4.01)

// Lost rewards per vault: $0.01 worth of rewards

e Each affected vault has lower collectedFees recorded
e This reduces their share in _updateRewards() calculations

At 10,000 vaults: $100 GUSD worth of rewards are misallocated.

Recommendation

Perform multiplication before division to minimize precision loss and
implement higher precision for fee calculation.

Status

Fixed on commit 689cc1cOfB1add3defaedf64a9d7b42c4de7115b.

© Coinspect 2024 30/33

P6022-09

]
Unused code

Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

core/contracts/interfaces/IVault6022.so0l#L7
core/contracts/interfaces/IController6022.sol#L4
core/contracts/Controller6022.sol#L4
core/contracts/interfaces/IRewardPoolFactory6022.sol

Description

The code contains several unused imports and an unimplemented interface:

1. Unused IERC20 import in multiple files:

import "@openzeppelin/contracts/token/ERC20/IERC20.s0l";

Found in:

e TVault6022.sol
e IController6022.sol

2. Unused IVault6022 import in Controller:

© Coinspect 2024 31/33

import {IVault6622} from "./interfaces/IVault6622.sol";

Found in:
e Controller6022.sol

3. Unimplemented empty interface inherited by RewardPool6622:

interface IRewardPoolFactory6022 {

¥

Found in:

e IRewardPoolFactory6022.sol

Recommendation

Remove the unused imports from their respective files and implement the
IRewardPoolFactory6022 interface.

Status

Fixed on commit 52127fbc83777ba61003fd7db5e72ce5ae3b7711.

© Coinspect 2024 32/33

6. Disclaimer

The contents of this report are provided "as is" without warranty of any kind.
Coinspect is not responsible for any consequences of using the information
contained herein.

This report represents a point-in-time and time-boxed evaluation conducted
within a specific timeframe and scope agreed upon with the client. The
assessment's findings and recommendations are based on the information, source
code, and systems access provided by the client during the review period.

The assessment's findings should not be considered an exhaustive list of all
potential security issues. This report does not cover out-of-scope components
that may interact with the analyzed system, nor does it assess the operational
security of the organization that developed and deployed the system.

This report does not imply ongoing security monitoring or guaranteeing the
current security status of the assessed system. Due to the dynamic nature of
information security threats, new vulnerabilities may emerge after the assessment
period.

This report should not be considered an endorsement or disapproval of any
project or team. It does not provide investment advice and should not be used to
make investment decisions.

© Coinspect 2024 33/33

